rayon/iter/par_bridge.rs
1#[cfg(not(feature = "web_spin_lock"))]
2use std::sync::Mutex;
3
4#[cfg(feature = "web_spin_lock")]
5use wasm_sync::Mutex;
6
7use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
8
9use crate::iter::plumbing::{bridge_unindexed, Folder, UnindexedConsumer, UnindexedProducer};
10use crate::iter::ParallelIterator;
11use crate::{current_num_threads, current_thread_index};
12
13/// Conversion trait to convert an `Iterator` to a `ParallelIterator`.
14///
15/// This creates a "bridge" from a sequential iterator to a parallel one, by distributing its items
16/// across the Rayon thread pool. This has the advantage of being able to parallelize just about
17/// anything, but the resulting `ParallelIterator` can be less efficient than if you started with
18/// `par_iter` instead. However, it can still be useful for iterators that are difficult to
19/// parallelize by other means, like channels or file or network I/O.
20///
21/// Iterator items are pulled by `next()` one at a time, synchronized from each thread that is
22/// ready for work, so this may become a bottleneck if the serial iterator can't keep up with the
23/// parallel demand. The items are not buffered by `IterBridge`, so it's fine to use this with
24/// large or even unbounded iterators.
25///
26/// The resulting iterator is not guaranteed to keep the order of the original iterator.
27///
28/// # Examples
29///
30/// To use this trait, take an existing `Iterator` and call `par_bridge` on it. After that, you can
31/// use any of the `ParallelIterator` methods:
32///
33/// ```
34/// use rayon::iter::ParallelBridge;
35/// use rayon::prelude::ParallelIterator;
36/// use std::sync::mpsc::channel;
37///
38/// let rx = {
39/// let (tx, rx) = channel();
40///
41/// tx.send("one!");
42/// tx.send("two!");
43/// tx.send("three!");
44///
45/// rx
46/// };
47///
48/// let mut output: Vec<&'static str> = rx.into_iter().par_bridge().collect();
49/// output.sort_unstable();
50///
51/// assert_eq!(&*output, &["one!", "three!", "two!"]);
52/// ```
53pub trait ParallelBridge: Sized {
54 /// Creates a bridge from this type to a `ParallelIterator`.
55 fn par_bridge(self) -> IterBridge<Self>;
56}
57
58impl<T> ParallelBridge for T
59where
60 T: Iterator<Item: Send> + Send,
61{
62 fn par_bridge(self) -> IterBridge<Self> {
63 IterBridge { iter: self }
64 }
65}
66
67/// `IterBridge` is a parallel iterator that wraps a sequential iterator.
68///
69/// This type is created when using the `par_bridge` method on `ParallelBridge`. See the
70/// [`ParallelBridge`] documentation for details.
71#[derive(Debug, Clone)]
72pub struct IterBridge<Iter> {
73 iter: Iter,
74}
75
76impl<Iter> ParallelIterator for IterBridge<Iter>
77where
78 Iter: Iterator<Item: Send> + Send,
79{
80 type Item = Iter::Item;
81
82 fn drive_unindexed<C>(self, consumer: C) -> C::Result
83 where
84 C: UnindexedConsumer<Self::Item>,
85 {
86 let num_threads = current_num_threads();
87 let threads_started: Vec<_> = (0..num_threads).map(|_| AtomicBool::new(false)).collect();
88
89 bridge_unindexed(
90 &IterParallelProducer {
91 split_count: AtomicUsize::new(num_threads),
92 iter: Mutex::new(self.iter.fuse()),
93 threads_started: &threads_started,
94 },
95 consumer,
96 )
97 }
98}
99
100struct IterParallelProducer<'a, Iter> {
101 split_count: AtomicUsize,
102 iter: Mutex<std::iter::Fuse<Iter>>,
103 threads_started: &'a [AtomicBool],
104}
105
106impl<Iter: Iterator + Send> UnindexedProducer for &IterParallelProducer<'_, Iter> {
107 type Item = Iter::Item;
108
109 fn split(self) -> (Self, Option<Self>) {
110 // Check if the iterator is exhausted
111 let update = self
112 .split_count
113 .fetch_update(Ordering::Relaxed, Ordering::Relaxed, |c| c.checked_sub(1));
114 (self, update.is_ok().then_some(self))
115 }
116
117 fn fold_with<F>(self, mut folder: F) -> F
118 where
119 F: Folder<Self::Item>,
120 {
121 // Guard against work-stealing-induced recursion, in case `Iter::next()`
122 // calls rayon internally, so we don't deadlock our mutex. We might also
123 // be recursing via `folder` methods, which doesn't present a mutex hazard,
124 // but it's lower overhead for us to just check this once, rather than
125 // updating additional shared state on every mutex lock/unlock.
126 // (If this isn't a rayon thread, then there's no work-stealing anyway...)
127 if let Some(i) = current_thread_index() {
128 // Note: If the number of threads in the pool ever grows dynamically, then
129 // we'll end up sharing flags and may falsely detect recursion -- that's
130 // still fine for overall correctness, just not optimal for parallelism.
131 let thread_started = &self.threads_started[i % self.threads_started.len()];
132 if thread_started.swap(true, Ordering::Relaxed) {
133 // We can't make progress with a nested mutex, so just return and let
134 // the outermost loop continue with the rest of the iterator items.
135 return folder;
136 }
137 }
138
139 loop {
140 if let Ok(mut iter) = self.iter.lock() {
141 if let Some(it) = iter.next() {
142 drop(iter);
143 folder = folder.consume(it);
144 if folder.full() {
145 return folder;
146 }
147 } else {
148 return folder;
149 }
150 } else {
151 // any panics from other threads will have been caught by the pool,
152 // and will be re-thrown when joined - just exit
153 return folder;
154 }
155 }
156 }
157}