rayon/iter/
multizip.rs

1use super::plumbing::*;
2use super::*;
3
4/// `MultiZip` is an iterator that zips up a tuple of parallel iterators to
5/// produce tuples of their items.
6///
7/// It is created by calling `into_par_iter()` on a tuple of types that
8/// implement `IntoParallelIterator`, or `par_iter()`/`par_iter_mut()` with
9/// types that are iterable by reference.
10///
11/// The implementation currently support tuples up to length 12.
12///
13/// # Examples
14///
15/// ```
16/// use rayon::prelude::*;
17///
18/// // This will iterate `r` by mutable reference, like `par_iter_mut()`, while
19/// // ranges are all iterated by value like `into_par_iter()`.
20/// // Note that the zipped iterator is only as long as the shortest input.
21/// let mut r = vec![0; 3];
22/// (&mut r, 1..10, 10..100, 100..1000).into_par_iter()
23///     .for_each(|(r, x, y, z)| *r = x * y + z);
24///
25/// assert_eq!(&r, &[1 * 10 + 100, 2 * 11 + 101, 3 * 12 + 102]);
26/// ```
27///
28/// For a group that should all be iterated by reference, you can use a tuple reference.
29///
30/// ```
31/// use rayon::prelude::*;
32///
33/// let xs: Vec<_> = (1..10).collect();
34/// let ys: Vec<_> = (10..100).collect();
35/// let zs: Vec<_> = (100..1000).collect();
36///
37/// // Reference each input separately with `IntoParallelIterator`:
38/// let r1: Vec<_> = (&xs, &ys, &zs).into_par_iter()
39///     .map(|(x, y, z)| x * y + z)
40///     .collect();
41///
42/// // Reference them all together with `IntoParallelRefIterator`:
43/// let r2: Vec<_> = (xs, ys, zs).par_iter()
44///     .map(|(x, y, z)| x * y + z)
45///     .collect();
46///
47/// assert_eq!(r1, r2);
48/// ```
49///
50/// Mutable references to a tuple will work similarly.
51///
52/// ```
53/// use rayon::prelude::*;
54///
55/// let mut xs: Vec<_> = (1..4).collect();
56/// let mut ys: Vec<_> = (-4..-1).collect();
57/// let mut zs = vec![0; 3];
58///
59/// // Mutably reference each input separately with `IntoParallelIterator`:
60/// (&mut xs, &mut ys, &mut zs).into_par_iter().for_each(|(x, y, z)| {
61///     *z += *x + *y;
62///     std::mem::swap(x, y);
63/// });
64///
65/// assert_eq!(xs, (vec![-4, -3, -2]));
66/// assert_eq!(ys, (vec![1, 2, 3]));
67/// assert_eq!(zs, (vec![-3, -1, 1]));
68///
69/// // Mutably reference them all together with `IntoParallelRefMutIterator`:
70/// let mut tuple = (xs, ys, zs);
71/// tuple.par_iter_mut().for_each(|(x, y, z)| {
72///     *z += *x + *y;
73///     std::mem::swap(x, y);
74/// });
75///
76/// assert_eq!(tuple, (vec![1, 2, 3], vec![-4, -3, -2], vec![-6, -2, 2]));
77/// ```
78#[derive(Debug, Clone)]
79pub struct MultiZip<T> {
80    tuple: T,
81}
82
83// These macros greedily consume 4 or 2 items first to achieve log2 nesting depth.
84// For example, 5 => 4,1 => (2,2),1.
85//
86// The tuples go up to 12, so we might want to greedily consume 8 too, but
87// the depth works out the same if we let that expand on the right:
88//      9 => 4,5 => (2,2),(4,1) => (2,2),((2,2),1)
89//     12 => 4,8 => (2,2),(4,4) => (2,2),((2,2),(2,2))
90//
91// But if we ever increase to 13, we would want to split 8,5 rather than 4,9.
92
93macro_rules! reduce {
94    ($a:expr, $b:expr, $c:expr, $d:expr, $( $x:expr ),+ => $fn:path) => {
95        reduce!(reduce!($a, $b, $c, $d => $fn),
96                reduce!($( $x ),+ => $fn)
97                => $fn)
98    };
99    ($a:expr, $b:expr, $( $x:expr ),+ => $fn:path) => {
100        reduce!(reduce!($a, $b => $fn),
101                reduce!($( $x ),+ => $fn)
102                => $fn)
103    };
104    ($a:expr, $b:expr => $fn:path) => { $fn($a, $b) };
105    ($a:expr => $fn:path) => { $a };
106}
107
108macro_rules! nest {
109    ($A:tt, $B:tt, $C:tt, $D:tt, $( $X:tt ),+) => {
110        (nest!($A, $B, $C, $D), nest!($( $X ),+))
111    };
112    ($A:tt, $B:tt, $( $X:tt ),+) => {
113        (($A, $B), nest!($( $X ),+))
114    };
115    ($A:tt, $B:tt) => { ($A, $B) };
116    ($A:tt) => { $A };
117}
118
119macro_rules! flatten {
120    ($( $T:ident ),+) => {{
121        #[allow(non_snake_case)]
122        fn flatten<$( $T ),+>(nest!($( $T ),+) : nest!($( $T ),+)) -> ($( $T, )+) {
123            ($( $T, )+)
124        }
125        flatten
126    }};
127}
128
129macro_rules! multizip_impls {
130    ($(
131        $Tuple:ident {
132            $(($idx:tt) -> $T:ident)+
133        }
134    )+) => {
135        $(
136            impl<$( $T, )+> IntoParallelIterator for ($( $T, )+)
137            where
138                $(
139                    $T: IntoParallelIterator<Iter: IndexedParallelIterator>,
140                )+
141            {
142                type Item = ($( $T::Item, )+);
143                type Iter = MultiZip<($( $T::Iter, )+)>;
144
145                fn into_par_iter(self) -> Self::Iter {
146                    MultiZip {
147                        tuple: ( $( self.$idx.into_par_iter(), )+ ),
148                    }
149                }
150            }
151
152            impl<'a, $( $T, )+> IntoParallelIterator for &'a ($( $T, )+)
153            where
154                $(
155                    $T: IntoParallelRefIterator<'a, Iter: IndexedParallelIterator>,
156                )+
157            {
158                type Item = ($( $T::Item, )+);
159                type Iter = MultiZip<($( $T::Iter, )+)>;
160
161                fn into_par_iter(self) -> Self::Iter {
162                    MultiZip {
163                        tuple: ( $( self.$idx.par_iter(), )+ ),
164                    }
165                }
166            }
167
168            impl<'a, $( $T, )+> IntoParallelIterator for &'a mut ($( $T, )+)
169            where
170                $(
171                    $T: IntoParallelRefMutIterator<'a, Iter: IndexedParallelIterator>,
172                )+
173            {
174                type Item = ($( $T::Item, )+);
175                type Iter = MultiZip<($( $T::Iter, )+)>;
176
177                fn into_par_iter(self) -> Self::Iter {
178                    MultiZip {
179                        tuple: ( $( self.$idx.par_iter_mut(), )+ ),
180                    }
181                }
182            }
183
184            impl<$( $T, )+> ParallelIterator for MultiZip<($( $T, )+)>
185            where
186                $( $T: IndexedParallelIterator, )+
187            {
188                type Item = ($( $T::Item, )+);
189
190                fn drive_unindexed<CONSUMER>(self, consumer: CONSUMER) -> CONSUMER::Result
191                where
192                    CONSUMER: UnindexedConsumer<Self::Item>,
193                {
194                    self.drive(consumer)
195                }
196
197                fn opt_len(&self) -> Option<usize> {
198                    Some(self.len())
199                }
200            }
201
202            impl<$( $T, )+> IndexedParallelIterator for MultiZip<($( $T, )+)>
203            where
204                $( $T: IndexedParallelIterator, )+
205            {
206                fn drive<CONSUMER>(self, consumer: CONSUMER) -> CONSUMER::Result
207                where
208                    CONSUMER: Consumer<Self::Item>,
209                {
210                    reduce!($( self.tuple.$idx ),+ => IndexedParallelIterator::zip)
211                        .map(flatten!($( $T ),+))
212                        .drive(consumer)
213                }
214
215                fn len(&self) -> usize {
216                    reduce!($( self.tuple.$idx.len() ),+ => Ord::min)
217                }
218
219                fn with_producer<CB>(self, callback: CB) -> CB::Output
220                where
221                    CB: ProducerCallback<Self::Item>,
222                {
223                    reduce!($( self.tuple.$idx ),+ => IndexedParallelIterator::zip)
224                        .map(flatten!($( $T ),+))
225                        .with_producer(callback)
226                }
227            }
228        )+
229    }
230}
231
232multizip_impls! {
233    Tuple1 {
234        (0) -> A
235    }
236    Tuple2 {
237        (0) -> A
238        (1) -> B
239    }
240    Tuple3 {
241        (0) -> A
242        (1) -> B
243        (2) -> C
244    }
245    Tuple4 {
246        (0) -> A
247        (1) -> B
248        (2) -> C
249        (3) -> D
250    }
251    Tuple5 {
252        (0) -> A
253        (1) -> B
254        (2) -> C
255        (3) -> D
256        (4) -> E
257    }
258    Tuple6 {
259        (0) -> A
260        (1) -> B
261        (2) -> C
262        (3) -> D
263        (4) -> E
264        (5) -> F
265    }
266    Tuple7 {
267        (0) -> A
268        (1) -> B
269        (2) -> C
270        (3) -> D
271        (4) -> E
272        (5) -> F
273        (6) -> G
274    }
275    Tuple8 {
276        (0) -> A
277        (1) -> B
278        (2) -> C
279        (3) -> D
280        (4) -> E
281        (5) -> F
282        (6) -> G
283        (7) -> H
284    }
285    Tuple9 {
286        (0) -> A
287        (1) -> B
288        (2) -> C
289        (3) -> D
290        (4) -> E
291        (5) -> F
292        (6) -> G
293        (7) -> H
294        (8) -> I
295    }
296    Tuple10 {
297        (0) -> A
298        (1) -> B
299        (2) -> C
300        (3) -> D
301        (4) -> E
302        (5) -> F
303        (6) -> G
304        (7) -> H
305        (8) -> I
306        (9) -> J
307    }
308    Tuple11 {
309        (0) -> A
310        (1) -> B
311        (2) -> C
312        (3) -> D
313        (4) -> E
314        (5) -> F
315        (6) -> G
316        (7) -> H
317        (8) -> I
318        (9) -> J
319        (10) -> K
320    }
321    Tuple12 {
322        (0) -> A
323        (1) -> B
324        (2) -> C
325        (3) -> D
326        (4) -> E
327        (5) -> F
328        (6) -> G
329        (7) -> H
330        (8) -> I
331        (9) -> J
332        (10) -> K
333        (11) -> L
334    }
335}